Clinical PET/CT Evaluation of Patients with Neuroendocrine Cancer: Experience with Expanded Access IND Production and Use of 68Ga-DOTA-NOC

Carla J. Mathias, Mark A. Green, and James W. Fletcher
Department of Radiology and Imaging Sciences
Indiana University School of Medicine
Indianapolis, IN 46202

(For patient eligibility and enrollment information, please contact: radyco@iupui.edu)

OBJECTIVE

- To provide the 68Ga-DOTA-NOC radiopharmaceutical for use in clinical PET/CT evaluation of patients with neuroendocrine tumors.

BACKGROUND

- The Expanded Access IND (Investigational New Drug exemption) can be a mechanism for providing patient access to a drug product that is not FDA-approved, but that is clinically needed in treatment of a serious disease [1].

- Gallium-68-labeled somatostatin-receptor-targeted peptides, such as 68Ga-DOTA-NOC, have found widespread clinical use in Europe for positron emission tomography (PET) detection of neuroendocrine tumors [2-5], but are not FDA-approved drug products in the USA.

- In response to a local clinical need to better define the location and extent of disease in neuroendocrine cancer patients who are candidates for multivisceral transplant [6], a method was developed for on-demand preparation of the 68Ga-DOTA-NOC peptide-chelate conjugate in a formulation suitable for intravenous administration, and an Expanded Access IND submitted to the FDA documenting the production procedure and the intended clinical use.

- The positron-emitting 68Ga$^{3+}$ (68-minute half-life) is available from a long-lived parent/daughter generator system [7], forming as the decay product of long-lived 68Ge (271-day half-life). On-demand, the short-lived 68Ga$^{3+}$ daughter is selectively eluted from the generator for use in radiopharmaceutical synthesis. Continued 68Ge decay in the generator allows re-elution to deliver clinically useful levels of 68Ga at 2-3 hour intervals.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding Affinity for Somatostatin Receptor Subtype (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hSSTR1</td>
</tr>
<tr>
<td>Octreotide a</td>
<td>1140</td>
</tr>
<tr>
<td>Ga-DOTA-NOC b</td>
<td>>10,000</td>
</tr>
<tr>
<td>Ga-DOTA-TOC b</td>
<td>>10,000</td>
</tr>
<tr>
<td>Ga-DOTA-TATE b</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

MATERIALS and METHODS

- Two Eckert & Ziegler (EZAG) IGG100 68Ge/68Ga generators, and two ITG Isotope Technologies Garching GmbH 68Ge/68Ga generators, have been employed to supply 68Ga for manual synthesis of 68Ga-DOTA-NOC under Expanded Access IND #117255. The DOTA-NOC peptide conjugate was purchased from ABX GmbH as commercial cGMP-grade product packaged at 60-µg per vial.

- Synthesis employed 68Ga$^{3+}$ in either 1.5 mL 0.1M ultrapure HCl (fractionated elution of the EZAG generator), or 4.0-mL 0.05M ultrapure HCl (ITG generator, without fractionation). The eluate was buffered to pH ~4.8 by addition of ultrapure NaOAc and reacted with the DOTA-NOC conjugate (60-µg for the EZAG eluate; 30-µg for the ITG eluate) with heating for 10-minutes. The 68Ga-DOTA-NOC product was isolated by C18 solid-phase extraction (C18 SepPak® Light); washed with sterile water or saline; recovered in ethanol:saline (0.6-mL, 85:15; or 1.0-mL, 50:50); and then diluted to ≤5% ethanol with sterile saline, followed by terminal sterilizing filtration into a sterile evacuated vial.

- Pre-release product quality control procedures include: half-life measurement for confirmation of radionuclidic identity; pH measurement; ITLC assessment of radiochemical purity (quantifying ionic 68Ga and colloidal 68Ga-hydroxide impurities); endotoxin testing; and a bubble point measurement to confirm the integrity of the sterile 0.2-µm filter employed for terminal product sterilization. Retrospective analysis of each production batch includes sterility testing, and measurement of 68Ge breakthrough.
PET/CT images (Siemens mCT camera) were acquired 60-minutes following i.v. administration of the 68Ga-DOTA-NOC radiopharmaceutical. All patients provided written informed consent prior to administration of the investigational radiopharmaceutical and imaging following an IRB-approved protocol.

Table 1. 68Ga-DOTA-NOC Dose Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EZAG Generator</th>
<th>ITG Generator</th>
<th>Aggregate Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>47</td>
<td>36</td>
<td>83</td>
</tr>
<tr>
<td>Administered Dose (mCi)</td>
<td>4.5 ± 0.7</td>
<td>5.0 ± 0.4</td>
<td>4.7 ± 0.6</td>
</tr>
<tr>
<td>DOTA-NOC Dose (µg)</td>
<td>43.2 ± 5.2</td>
<td>23.0 ± 5.9</td>
<td>34.4 ± 11.4</td>
</tr>
<tr>
<td>Radiochemical Purity (%)</td>
<td>98.9 ± 0.4</td>
<td>99.3 ± 0.5</td>
<td>99.0 ± 0.5</td>
</tr>
<tr>
<td>68Ge Breakthrough at Dose Expiration Time (%)</td>
<td>2.8×10^{-7}</td>
<td>1.2×10^{-5}</td>
<td>5.3×10^{-6}</td>
</tr>
<tr>
<td>Synthesis Time, Elution-to-Dose Release (minutes)</td>
<td>46 ± 5</td>
<td>(median 49)</td>
<td>(median 46)</td>
</tr>
</tbody>
</table>

RESULTS

- Table 1 summarizes our radiopharmaceutical production experience for the 83 patient doses of 68Ga-DOTA-NOC prepared in the first 2-years of Physician-Sponsored Expanded Access IND #117,255. Product radiochemical purity was consistently high, averaging $99.0 \pm 0.5\%$.

- The level of DOTA-NOC in the administered doses (Table 1) was always in keeping with the *European Association of Nuclear Medicine Procedure Guidelines* recommendation of ≤ 50 µg [2]. The ITG generator eluate has very low trace metals contamination, allowing reliable product synthesis with a lower mass of the DOTA-NOC peptide-conjugate (30-µg vs. 60-µg).

- 68Ge breakthrough in the 68Ga-DOTA-NOC radiopharmaceutical (Table 1) was always far below the specified 0.001% upper limit, regardless of generator manufacturer. Consistent with the manufacturers’ generator specifications, 68Ge breakthrough was higher with the ITG generator.

- Total synthesis time, from generator elution to post-QC release of final product, averaged 47 ± 5 minutes. Endotoxin testing was the rate-limiting QC test in progression to final dose release. The slightly longer production time with the ITG generator (Table 1) results from procedural modifications to reduce worker radiation exposure.

- 68Ga-DOTA-NOC has consistently delivered high quality PET images (Figures 1 and 2) that have significantly impacted clinical care decisions with information not available by conventional imaging. In approximately one-half the patients being screened for multi visceral transplant, 68Ga-DOTA-NOC imaging has revealed previously unknown disease in locations that preclude transplant.
Figure 1. Images of a carcinoid tumor patient obtained with both 68Ga-DOTA-NOC and 111In-Octreoscan, the only FDA-approved agent for somatostatin-receptor-targeted neuroendocrine tumor imaging. In contrast to the 111In image, which appears normal, the 68Ga image reveals multiple metastatic lesions in the liver. (The pituitary also expresses somatostatin receptors and is visualized in the 68Ga PET image, along with normal uptake in the spleen, kidneys, and bladder.) The 68Ga PET scan was performed because the patient’s symptoms were inconsistent with the 111In-Octreoscan findings.
Figure 2. Whole-body ^{68}Ga-DOTA-NOC PET images obtained to define extent of disease in two patients being considered for transplant. Images of the patient on the left show extensive ^{68}Ga-DOTA-NOC uptake in metastatic lesions throughout the body. Images from the patient on the right also show multiple sites of metastatic disease, but these are confined to the liver and abdominal cavity. Following evaluation with ^{68}Ga-DOTA-NOC PET, only the patient on the right remained a candidate for treatment by multi-visceral transplant.
CONCLUSIONS

• The manual 68Ga-DOTA-NOC synthesis methods have been reliable and robust in radiopharmaceutical production for clinical use.

• PET/CT with 68Ga-DOTA-NOC has often provided unique clinical information, advancing medical care for neuroendocrine cancer patients through improved definition of the location and extent of disease.

• The Expanded Access IND has provided a valuable regulatory pathway for supplying this investigational drug, which is filling a patient care need, but would otherwise be unavailable for clinical use in the United States.

ACKNOWLEDGEMENT

This effort was supported by the Indiana University Department of Radiology and Imaging Sciences, the I.U. Department of Surgery, Section of Transplant Surgery, and the I.U. Health Department of Radiology.

REFERENCES

Patient Eligibility and Scheduling Forms for 68Ga-DOTA-NOC PET/CT at Indiana University are available at:

http://imaging.medicine.iu.edu/research/office-for-research-imaging/office-for-research-imaging/forms-and-resources/expanded-access-acetate-and-ga-dota-noc/

For questions about patient eligibility, enrollment, or scheduling, please contact: radyco@iupui.edu

General information on PET/CT imaging in neuroendocrine cancer is available at the website of the Society of Nuclear Medicine and Molecular Imaging:

Neuroendocrine Tumors and Molecular Imaging – Factsheet
(http://snmmi.files.cms-plus.com/docs/fact_sheets/NET_factsheet.pdf)